

Lecture Slides for

INTRODUCTION TO

Machine Learning

ETHEM ALPAYDIN
© The MIT Press, 2004

Edited for CS 536 Fall 2005 - Rutgers University
Ahmed Elgammal
This is a draft version. The final version will be posted later
alpaydin@boun.edu.tr
http:// www.cmpe.boun.edu.tr/ ~ethem/i2ml

Recall - Discriminant Functions

$$
g_{i}(x)=\left\{\begin{array}{l}
-R\left(\alpha_{i} \mid x\right) \\
P\left(C_{i} \mid x\right) \\
p\left(x \mid C_{i}\right) P\left(C_{i}\right)
\end{array}\right.
$$

K decision regions R_{1}, \ldots, R_{K}
$R_{i}=\left\{x \mid g_{i}(x)=\max _{k} g_{k}(x)\right\}$

Likelihood- vs. Discriminantbased Classification

- Likelihood- based: Assume a model for $\mathrm{p}\left(\mathrm{x} \mid \mathrm{C}_{\mathrm{i}}\right)$, use Bayes' rule to calculate $\mathrm{P}\left(\mathrm{C}_{\mathrm{i}} \mid \mathrm{x}\right)$

$$
\mathrm{g}_{\mathrm{i}}(\mathrm{x})=\log \mathrm{P}\left(\mathrm{C}_{\mathrm{i}} \mid \mathrm{x}\right)
$$

- Discriminant- based: Assume a model for $g_{i}\left(x \mid \Phi_{i}\right)$; no assumption about the densities; no density estimation
- Discriminant- based is non- parametric (w.r.t. the class densities)
- Estimating the boundaries is enough; no need to accurately estimate the densities inside the boundaries
- Learning: optimization of the parameters Φ_{i} to maximize the classification accuracy given labeled training data (or minimize error function)
- Inductive bias ?

Linear Discriminant

- Linear discriminant:

$$
\mathrm{g}_{\mathrm{i}}\left(\mathrm{x} \mid \mathrm{w}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i} 0}\right)=\mathrm{w}_{\mathrm{i}}^{\top} \mathrm{x}+\mathrm{w}_{\mathrm{i} 0}=\sum_{\mathrm{j}=1}^{\mathrm{d}} \mathrm{w}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}}+\mathrm{w}_{\mathrm{i} 0}
$$

- Advantages:
\square Simple: O(d) space/ computation
- Knowledge extraction: Weighted sum of attributes; positive/ negative weights, magnitudes (credit scoring)
\square Optimal when $\mathrm{p}\left(\mathrm{x} \mid \mathrm{C}_{\mathrm{i}}\right)$ are Gaussian with shared cov matrix; useful when classes are (almost) linearly separable

Generalized Linear Model

- Quadratic discriminant:

$$
g_{i}\left(x \mid W_{i}, w_{i}, w_{i 0}\right)=x^{\top} W_{i} x+w_{i}^{\top} x+w_{i 0}
$$

- Higher- order (product) terms:

$$
z_{1}=x_{1}, z_{2}=x_{2}, z_{3}=x_{1}^{2}, z_{4}=x_{2}^{2}, z_{5}=x_{1} x_{2}
$$

Map from x to z using nonlinear basis functions and use a linear discriminant in z-space

$$
g(\mathbf{x})=\sum_{j=1}^{k} w_{j} \phi_{j}(\mathbf{x})
$$

Extension to Non- linear

- Key idea: transform x_{i} to a higher dimensional space to "make life easier"
\square Input space: the space containing x_{i}
\square Feature space: the space of $\phi\left(\mathrm{x}_{\mathrm{i}}\right)$ after transformation
■ Why transform?
\square Linear operation in the feature space is equivalent to non- linear operation in input space
\square The classification task can be "easier" with a proper transformation. Example: XOR
- Kernel trîckofor efficient computation

Input space \qquad

Feature space

Kernel Trick

- The relationship between the kernel function K and the mapping $\phi() i K.(\mathbf{x}, \mathbf{y})=\langle\phi(\mathbf{x}), \phi(\mathbf{y})\rangle$
\square This is known as the kernel trick
- In practice, we specify K, thereby specifying $\phi($.$) indirectly,$ instead of choosing ϕ (.)
- Intuitively, K(x,y) represents our desired notion of similarity between data x and y and this is from our prior knowledge
- $K(x, y)$ needs to satisfy a technical condition (Mercer condition) in order for $\phi($.$) to exist$

Kernel Trick

- Define the kernel function $K(x, v)$ as

$$
K(\mathbf{x}, \mathbf{y})=\left(1+x_{1} y_{1}+x_{2} y_{2}\right)^{2}
$$

- Consider the following transformation

$$
\begin{gathered}
\phi\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right)=\left(1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right) \\
\phi\left(\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]\right)=\left(1, \sqrt{2} y_{1}, \sqrt{2} y_{2}, y_{1}^{2}, y_{2}^{2}, \sqrt{2} y_{1} y_{2}\right) \\
\left\langle\phi\left(\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]\right), \phi\left(\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]\right)\right\rangle=\left(1+x_{1} y_{1}+x_{2} y_{2}\right)^{2} \\
=K(\mathbf{x}, \mathbf{y})
\end{gathered}
$$

- The inner product can be computed by K without going through the map $\phi($.

Example Kernel Functions

- Polynomial kernel with degree d

$$
K(\mathbf{x}, \mathbf{y})=\left(\mathbf{x}^{T} \mathbf{y}+1\right)^{d}
$$

- Radial basis function kernel with width σ

$$
K(\mathbf{x}, \mathbf{y})=\exp \left(-\|\mathbf{x}-\mathbf{y}\|^{2} /\left(2 \sigma^{2}\right)\right)
$$

Closely related to radial basis function neural networks

- Sigmoid with parameter κ and θ

$$
K(\mathbf{x}, \mathbf{y})=\tanh \left(\kappa \mathbf{x}^{T} \mathbf{y}+\theta\right)
$$

- It does not satisfy the Mercer condition on all κ and θ
- Research on different kernel functions in different applications is very active

Two Classes

Geometry

Multiple Classes

$$
g_{i}\left(x \mid w_{i}, w_{i 0}\right)=w_{i}^{\top} x+w_{i 0}
$$

ChooseC ${ }_{i}$ if
$g_{i}(x)=\max _{j=1}^{k} g_{j}(x)$

Classes are linearly separable

Pairwise Separation

Linear Separable Case

- Many decision boundaries can separate these two classes
- Which one should we choose?

Bad Decision Boundaries

Margin Should Be Large

- The decision boundary should be as far away from the data as possible

```
Class 1
\[
\mathbf{w}^{T} \mathrm{x}+w_{o}=-\dot{1} \quad \mathrm{w}^{T} \mathrm{x}+w_{o}=0
\]
```


Optimal Separating Hyperplane

$X=\left\{x^{t}, r^{t}\right\}_{t}$ wherer $^{t}= \begin{cases}+1 & \text { if } x^{t} \in C_{1} \\ -1 & \text { if } x^{t} \in C_{2}\end{cases}$
find w and w_{0} such that
$w^{\top} x^{t}+w_{0} \geq+1$ for $r^{t}=+1$
$w^{\top} x^{t}+w_{0} \leq+1$ for $r^{t}=-1$
which can be rewritten as
$r^{t}\left(w^{\top} x^{t}+w_{0}\right) \geq+1$
(Cortes and Vapnik, 1995; Vapnik, 1995)

Margin

- Distance from the discriminant to the closest instances on either side
- Distance of x to the hyperplane is $\frac{\left|w^{\top} x^{t}+w_{0}\right|}{\|w\|}$
- We require $\frac{r^{t}\left(w^{\top} x^{t}+w_{0}\right)}{\|w\|} \geq \rho, \forall t$
- For a unique sol'n, $\mathrm{fix} \rho\|\mathrm{w}\|=1$ and to max margin

$$
\min \frac{1}{2}\|w\|^{2} \text { subject tor }{ }^{t}\left(w^{\top} x^{t}+w_{0}\right) \geq+1, \forall t
$$

$\min \frac{1}{2}\|w\|^{2}$ subject tor ${ }^{t}\left(w^{\top} x^{t}+w_{0}\right) \geq+1, \forall t$

- Standard quadratic optimization problem, whose complexity depends on d

Another formulation: complexity depends on N

Unconstrained optimization using Lagrange multipliers α^{t}. We need to Minimize w.r.t. w, w_{o} and Maximize w.r.t. $\alpha^{\mathrm{t}} \geq 0$

$$
\begin{aligned}
& \min \frac{1}{2}\|\mathbf{w}\|^{2} \text { subject to } r^{t}\left(\mathbf{w}^{T} \mathbf{x}^{t}+w_{0}\right) \geq+1, \forall t \\
& L_{p}=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{t=1}^{N} \alpha^{t}\left[r^{t}\left(\mathbf{w}^{T} \mathbf{x}^{t}+w_{0}\right)-1\right] \\
& \quad=\frac{1}{2}\|\mathbf{w}\|^{2}-\sum_{t=1}^{N} \alpha^{t} r^{t}\left(\mathbf{w}^{T} \mathbf{x}^{t}+w_{0}\right)+\sum_{t=1}^{N} \alpha^{t}
\end{aligned}
$$

This is a quadratic optimization problem. Equivalently, we can solve the dual problem: Maximize L_{p} w.r.t. α^{t} subject to the constraints:

$$
\begin{aligned}
& \frac{\partial L_{p}}{\partial \mathbf{w}}=0 \Rightarrow \mathbf{w}=\sum_{t=1}^{N} \alpha^{t} r^{t} \mathbf{x}^{t} \\
& \frac{\partial L_{p}}{\partial w_{0}}=0 \Rightarrow \sum_{t=1}^{N} \alpha^{t} r^{t}=0
\end{aligned}
$$

Maximize

$$
\begin{aligned}
& \operatorname{mize}_{d}=\frac{1}{2}\left(w^{\top} w\right)-w^{\top} \sum_{t} \alpha^{t} r^{t} x^{t}-w_{0} \sum_{t} \alpha^{t} r^{t}+\sum_{t} \alpha^{t} \\
&=\frac{1}{2}\left(w^{\top} w\right)+\sum_{t} \alpha^{t} \\
&=\frac{1}{2} \sum_{t} \sum_{s} \alpha^{t} \alpha^{s} r^{t} r^{s}\left(x^{t}\right)^{\top} x^{s}+\sum_{t} \alpha^{t} \\
& \text { subject to } \sum_{t} \alpha^{t} r^{t}=0 \text { and } \alpha^{t} \geq 0, \forall t
\end{aligned}
$$

- This is an optimization problem in α^{t} only
- This can be solved using quadratic optimization.
- This depends on the sample size N and not on the the input dimension d Very important feature!! Why ?
- Most α^{t} are 0 and only a small number have $\alpha^{t}>0$; they are the support vectors

Characteristics of the Solution

- Many of the α^{t} are zero
$\square \mathrm{w}$ is a linear combination of a small number of examples
\square Sparse representation
- x^{t} with non-zero α^{t} are called support vectors (SV)
\square The decision boundary is determined only by the SV
- Let $\mathrm{t}_{\mathrm{j}}(\mathrm{j}=1, \ldots, \mathrm{~s})$ be the indices of the s support vectors. We can write
$\mathbf{w}=\sum_{j=1}^{s} \alpha^{j} r^{j} \mathbf{x}^{j} \quad w_{o}=r^{j}-\mathbf{w}^{T} \mathbf{x}^{j}$
- For testing with a new data z
${ }^{\square}$ Comput $^{\prime} \mathbf{w}^{T} \mathbf{z}+w_{o}=\sum_{j=1}^{S} \alpha^{j} r{ }^{j}\left(\mathbf{x}^{j^{T}} \mathbf{z}\right)+w_{o}$
- and classify z as class 1 if the sum is positive, and class 2
otherwise

A Geometric Interpretation

Soft Margin Hyperplane

- Not linearly separable: use slack variables

$$
r^{t}\left(w^{\top} x^{t}+w_{0}\right) \geq 1-\xi^{t}
$$

- Soft error
$\sum_{t} \xi^{t}$
- New primal is

$L_{p}=\frac{1}{2}\|w\|^{2}+C \sum_{t} \xi^{t}-\sum_{t} \alpha^{t}\left[r^{t}\left(w^{\top} x^{t}+w_{0}\right)-1+\xi^{t}\right]-\sum_{t} \mu^{t} \xi^{t}$

The Optimization Problem

- The dual of the problem is

$$
\begin{aligned}
& \max . L(\boldsymbol{\alpha})=\sum_{t} \alpha^{t}-\frac{1}{2} \sum_{t, s}^{n} \alpha^{t} \alpha^{s} r^{t} r^{s}\left(\mathbf{x}^{t}\right)^{T} \mathbf{x}^{s} \\
& \text { subject to } C \geq \alpha^{t} \geq 0, \sum_{t} \alpha^{t} r^{t}=0
\end{aligned}
$$

- w is also recovered as $\mathrm{w}=\sum_{j=1}^{s} \alpha^{j} r^{j} \mathbf{x}^{j}$
- The only difference witn tne innearıy separavie case is that there is an upper bound C on α^{t}
- Once again, a QP solver can be used to find α^{i}

Kernel Machines

- Preprocess input x by basis functions

$$
\begin{array}{ll}
z=\varphi(x) & g(z)=w^{\top} z \\
& g(x)=w^{\top} \varphi(x)
\end{array}
$$

- The SVM solution

$$
\begin{aligned}
& w=\sum_{t} \alpha^{t} r^{t} z^{t}=\sum_{t} \alpha^{t} r^{t} \varphi\left(x^{t}\right) \\
& g(x)=w^{\top} \varphi(x)=\sum_{t} \alpha^{t} r^{t} \varphi\left(x^{t}\right)^{\top} \varphi(x) \\
& g(x)=\sum_{t} \alpha^{t} r^{t} K\left(x^{t}, x\right)
\end{aligned}
$$

Kernel Functions

- Polynomials of degree $q: K\left(x^{t}, x\right)=\left(x^{\top} x^{t}+1\right)^{a}$

$$
\begin{aligned}
\mathrm{K}(\mathrm{x}, \mathrm{y}) & =\left(x^{\top} y+1\right)^{2} \\
& =\left(x_{1} y_{1}+x_{2} y_{2}+1\right)^{2} \\
& =1+2 x_{1} y_{1}+2 x_{2} y_{2}+2 x_{1} x_{2} y_{1} y_{2}+x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2} \\
\phi(x) & =\left[1, \sqrt{2} x_{1}, \sqrt{2} x_{2}, \sqrt{2} x_{1} x_{2}, x_{1}^{2}, x_{2}^{2}\right]^{\top}
\end{aligned}
$$

- Radial-basis functions: $K\left(x^{t}, x\right)=\exp \left[-\frac{\left\|x^{t}-x\right\|^{2}}{\sigma^{2}}\right]$
- Sigmoidal functions:

$$
K\left(x^{t}, x\right)=\tanh \left(2 x^{\top} x^{t}+1\right)
$$

(Cherkassky and Mulier, 1998)

Handwritina Recoanition

output $\Sigma v_{i} k\left(\mathbf{x}_{\mathrm{X}}^{\mathbf{x}} \mathbf{i}\right)+b$
weights
dot product $\left(\Phi(\mathrm{x}) \cdot \Phi\left(\mathrm{x}_{i}\right)\right)=k\left(\mathrm{x}, \mathrm{x}_{i}\right)$
mapped vectors $\Phi\left(\mathrm{x}_{\mathrm{i}}\right), \Phi(\mathrm{x})$
support vectors $\mathrm{x}_{1} \ldots \mathrm{x}_{n}$
1 test vector x

Using Kernel Functions

- Change all inner products to kernel functions
- For training,

Original $\quad \max . W(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{T} \mathbf{x}_{j}$

$$
\text { subject to } C \geq \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

With kernel max. $W(\boldsymbol{\alpha})=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i=1, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)$
function

$$
\text { subject to } C \geq \alpha_{i} \geq 0, \sum_{i=1}^{n} \alpha_{i} y_{i}=0
$$

Using Kernel Functions

- For testing, the new data z is classified as Class 1 if $\mathrm{f} \geq 0$, and as Class 2 if $\mathrm{f}<0$

Original

$$
\mathbf{w}=\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}} \mathbf{x}_{t_{j}}
$$

function

$$
\mathbf{w}=\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}} \phi\left(\mathbf{x}_{t_{j}}\right)
$$

$$
f=\langle\mathbf{w}, \phi(\mathbf{z})\rangle+b=\sum_{j=1}^{s} \alpha_{t_{j}} y_{t_{j}} K\left(\mathbf{x}_{t_{j}}, \mathbf{z}\right)+b
$$

Example

- Suppose we have 5 1D data points
$\square x_{1}=1, x_{2}=2, x_{3}=4, x_{4}=5, x_{5}=6$, with $1,2,6$ as class 1 and 4,5 as class $2 \Rightarrow y_{1}=1, y_{2}=1, y_{3}=-1, y_{4}=-1, y_{5}=1$
- We use the polynomial kernel of degree 2
- $K(x, y)=(x y+1)^{2}$
$\square C$ is set to 100
- We first find $\alpha_{i}(i=1, \ldots, 5)$ by
subject to $100 \geq \alpha_{i} \geq 0, \sum_{i=1}^{5} \alpha_{i} y_{i}=0$

$$
\max . \sum_{i=1}^{5} \alpha_{i}-\frac{1}{2} \sum_{i=1}^{5} \sum_{j=1}^{5^{i}=1} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(x_{i} x_{j}+1\right)^{2}
$$

Example

- By using a QP solver, we get
$\square \alpha_{1}=0, \alpha_{2}=2.5, \alpha_{3}=0, \alpha_{4}=7.333, \alpha_{5}=4.833$
\square Note that the constraints are indeed satisfied
\square The support vectors are $\left\{x_{2}=2, x_{4}=5, x_{5}=6\right\}$
$f(y)=\begin{gathered}\text { Th- } \\ =2.5(1)(2 y+1)^{2}+7.333(-1)(5 y+1)^{2}+4.833(1)(6 y+1)^{2}+b\end{gathered}$
$=0.6667 x^{2}-5.333 x+b$
- b is recovered by solving $f(2)=1$ or by $f(5)=-1$ or by

$\Longrightarrow f(y)=0.6667 x^{2}-5.333 x+9$

Example

Multi- class Classification

- SVM is basically a two- class classifier
- One can change the QP formulation to allow multi- class classification
- More commonly, the data set is divided into two parts "intelligently" in different ways and a separate SVM is trained for each way of division
- Multi- class classification is done by combining the output of all the SVM classifiers
- Majority rule
- Error correcting code
- Directed acyclic graph

Software

- A list of SVM implementations can be found at http:/ / www.kernel- machines.org/ software.html
- Some implementations (such as LIBSVM) can handle multi- class classification
- SVMLight is among one of the earliest implementations of SVM
- Several Matlab toolboxes for SVM are also available

Steps for Classification

- Prepare the pattern matrix
- Select the kernel function to use
- Select the parameter of the kernel function and the value of C
\square You can use the values suggested by the SVM software, or you can set apart a validation set to determine the values of the parameter
- Execute the training algorithm and obtain the α_{i} values
- Unseen data can be classified using the α_{i} values and the support vectors

SVM Strengths \& Weaknesses

- Strengths
\square Training is relatively easy
- No local optimal, unlike in neural networks
\square It scales relatively well to high dimensional data
\square Tradeoff between classifier complexity and error can be controlled explicitly
\square Non-traditional data like strings and trees can be used as input to SVM, instead of feature vectors
■ Weaknesses
\square Need a "good" kernel function

ε Support Vector Regression

- Linear regression in feature space
- Unlike in least square regression, the error function is ε insensitive loss function
- Intuitively, mistake less than ε is ignored
- This leads to sparsity similar to SVM
ε-insensitive loss function
Palue off

Square loss function

ε Support Vector Regression

- Given: a data set $\left\{x_{1}, \ldots, x_{n}\right\}$ with target values $\left\{u_{1}, \ldots, u_{n}\right\}$, we want to do ε - SVR
- The optimization problem is

ε Support Vector Regression

- C is a parameter to control the amount of influence of the error
- The $\|w\|^{2}$ term serves as controlling the complexity of the regression function
\square This is similar to ridge regression
- After training (solving the QP), we get values of α_{i} and α_{i}, which are both zero if x_{i} does not contribute to the error function
- For a new instance z,

Other Kernel Methods

- A lesson learned in SVM: a linear algorithm in the feature space is equivalent to a non- linear algorithm in the input space
- Classic linear algorithms can be generalized to its non-linear version by going to the feature space
- Kernel principal component analysis, kernel independent component analysis, kernel canonical correlation analysis, kernel k - means, 1 - class SVM are some examples

Conclusion

- SVM is a useful method for classification
- Two key concepts of SVM: maximize the margin and the kernel trick
- Much active research is taking place on areas related to SVM
- Many SVM implementations are available on the web for you to try on your data set!

Resources

- http://www.kernel-machines.org/
- http://www.support- vector.net/
- http:// www.support- vector.net/ icml- tutorial.pdf
- http://www.kernel- machines.org/papers/tutorialnips.ps.gz
- http:// www.clopinet.com/ isabelle/ Projects/ SVM/ ap plist.html

SVM for Regression

- Use a linear model (possibly kernelized)

$$
f(x)=w^{\top} x+w_{0}
$$

- Use the ϵ - sensitive error function

$$
e_{\varepsilon}\left(r^{t}, f\left(x^{t}\right)\right)= \begin{cases}0 & \text { if } \mid r^{t}-f\left(x^{t}\right)<\varepsilon \\ r^{t}-f\left(x^{t}\right) \mid-\varepsilon & \text { otherwise }\end{cases}
$$

- $\min \frac{1}{2}\|w\|^{2}+C \sum_{t}\left(\xi_{+}^{t}+\xi_{-}^{t}\right)$

$$
\begin{aligned}
\mathrm{r}^{t}-\left(\mathrm{w}^{\top} \mathrm{x}+\mathrm{w}_{0}\right) & \leq \varepsilon+\xi_{+}^{\mathrm{t}} \\
\left(\mathrm{w}^{\top} \mathrm{x}+\mathrm{w}_{0}\right)-\mathrm{r}^{t} & \leq \varepsilon+\xi_{-}^{t} \\
\xi_{+}^{\mathrm{t}} \xi_{-}^{t} & \geq 0
\end{aligned}
$$

