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Recall - Discriminant Functions
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Likelihood- vs. Discriminant-
based Classification

m Likelihood-based: Assume a model for p(x|C;), use Bayes’ rule

to calculate P(Cj|x)
gi(x) = log P(C;[x)

m Discriminant-based: Assume a model for g;(x|®;); no
assumption about the densities; no density estimation

m Discriminant-based is non-parametric (w.r.t. the class
densities)

m Estimating the boundaries is enough; no need to accurately
estimate the densities inside the boundaries

m Learning: optimization of the parameters ©,to maximize the
classification accuracy given labeled training data (or
minimize error function)

m Inductive bias ?
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Linear Discriminant

m Linear discriminant;

d
-
gi(X [w; ’WiO) =W; X +W;q = ZWinj +Wio
j=1
m Advantages:
O Simple: O(d) space/computation
O Knowledge extraction: Weighted sum of attributes;
positive/negative weights, magnitudes (credit scoring)

O Optimal when p(x|C;) are Gaussian with shared cov matrix;
useful when classes are (almost) linearly separable
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Generalized Linear Model

m Quadratic discriminant:
(X [W,w,, W, )=X"WX +W/ X +wW
gi i Wi, Wi )= i i i0

m Higher-order (product) terms:

Map from x to z using nonlinear basis functions
and use a linear discriminant in z-space

glx)= 308,
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Extension to Non-linear

m Key idea: transform x; to a higher dimensional space to “make
life easier”
O Input space: the space containing X;
O Feature space: the space of ¢(x;) after transformation
m Why transform?
O Linear operation in the feature space is equivalent to non-linear
operation in input space
O The classification task can be “easier” with a proper
transformation. Example: XOR

= Kernel tricksfor efficient computation @)
o ° H(m)
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Kernel Trick

m The relationship between the kernel function K and the

mapping ¢() iIK (x,y) = (¢(x), #(¥))

OThis is known as the kernel trick

m In practice, we specify K, thereby specifying ¢(.) indirectly,
instead of choosing ¢(.)

m Intuitively, K(X,y) represents our desired notion of
similarity between data x and y and this is from our prior
knowledge

m K(X,y) needs to satisfy a technical condition (Mercer
condition) in order for ¢(.) to exist
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Kernel Trick

m Define the kernel function K (x.v) as 5
K(x,y) = (1 4+ z1y1 + 20y2)

= Consider the following transformation

gb([%_) - (17 \/ixla \/§£C2, x%)£%7 \/§ZL’1332)
s([45]) = (1, v2y1, V2u2, 93, ¥3, V2y192)

(@[ 73] ([ 1A ])) = (1 4 2191 + 2292)°
= K(x,y)

m The inner product can be computed by K without going
through the map ¢(.)
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Example Kernel Functions

m Polynomial kernel with degree d

K(x,y) = (xTy 4 1)¢
m Radial basis function kernel with width o
K(x,y) = exp(—|jx — y||?/(202))
O Closely related to radial basis function neural networks
m Sigmoid with parameter k and 0
K(x,y) = tanh(xxTy + 6)
O It does not satisfy the Mercer condition on all x and 0

m Research on different kernel functions in
different applications is very active

70
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Two Classes

g(X) = 91(X)_ gz(X)

A T T
= (WX + Wi, ) (WIx + W)
glx)=w x,+wx,+w,=0 .
2(x)>0 = (Wl _Wz) X+ (Wlo _Wzo)
g(x)<0 N
o O =W' X +W,
C, ¢,
¢ X O
X o)
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X C, ifglx)>0
X o choose{ _* (x) _
C, otherwise
X
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\
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Geometry
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Multiple Classes
0 (X [w;, ’WiO) = WiTX + Wi
gy A
ChooseC,; if
K
of (X) = I‘T}S.LX g; (X)
Classes are
linearly separable
.\']
13
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Pairwise Separation

.
oA 9jj (X [w; ’Wijo) = Wj; X + Wjjo
H” >0 |f X e Ci
X" o o g; (%)= <0 ifx eC,
C, @) ¢ don'tcare otherwise
2 o O o

choose C, if
i) v c vj #i,0;(x)>0
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Linear Separable Case

= Many decision
o © Class 2 boundaries can separate
these two classes
™ ~, O = Which one should we
- © choose?
0.‘ O
[ | [ | .,
[ | [ ""‘
Class 1
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Bad Decision Boundaries
o O Class 2 o O Class 2
., o o
[ S . o | o
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Class 1 Class 1
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Margin Should Be Large

m The decision boundary should be as far away from the data

as possible
We §hou|d maximize the margin, m
W 2
m = ——-
( |[w]
@)
L “w, Class 2
.,WTX 4w, =1
u m
Class 1
T - T _
X = -1 X+ wo =
‘W + wo N\ 22
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Optimal Separating Hyperplane

X = {xt,rt}t wherer" ={+1 !f X: €Cy
-1 ifx €C,

find w and w,, such that

w'x' +w, >+1forr' = +1

w'x' +w, <+1forr' =-1

which can be rewritten as

rt(wat +W0)Z +1

(Cortes and Vapnik, 1995; Vapnik, 1995)

33
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Margin

Distance from the discriminant to the closest

u
instances on either side
Tyt
m Distance of x to the hyperplane is ‘W X +Wo‘
— w]
= We require r (W "i,(V”JrWO)z p, Vvt
m For a unique sol’'n, fix p||w||=1and to max margin

min %”\N”2 subject tor {(wTxt +w,)> +1,vt

34
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1 2 ; tln Tyt
min =|w|” subject tor (w™x +w,)> +1,vt
2
m Standard quadratic
optimization = ()=+1
problem, whose
- g(x)=-1 i O
complexity : o
depends ond c C, C
. 05
X
% X Q
X X 1w
W
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Another formulation: complexity depends on N

Unconstrained min %”w”2 subject to 7 (WT x'+ WO)Z +1,V¢

optimization

using Lagrange 1 , & A .

multipliers at. Lp = —”W” - ZOK [I’ (W X + WO)— 1]
We need to 2 t=1

Minimize w.r.t. 1 5 N N
w,w, and = —||w|| - Zatrt (WTX’ o+ w0)+ Zat
Maximize w.r.t. 2

at>0

t=1 t=1

This is a quadratic optimization problem. Equivalently, we can solve the
dual problem: Maximize L, w.r.t. a' subject to the constraints:

oL N
L=0=>w= Za’rtx’
ow =1

ow, =1
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Maximize 1

L, ZE(WTW)—WTZOLtrtXt Wy a'rt + > a
t t t
1
=§(WTW)+ Z‘oct

= %ZZatasrtrs(xt)T X° + Zat
t S t

subjectto  a'r* =0and o' >0, Vt
t

This is an optimization problem in atonly

This can be solved using quadratic optimization.

This depends on the sample size N and not on the the
input dimension d Very important feature!! Why ?

Most at are 0 and only a small number have of >0; they are
the support vectors
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Characteristics of the Solution

m Many of the o' are zero
O w is a linear combination of a small number of examples
O Sparse representation

m X' with non-zero o' are called support vectors (SV)
O The decision boundary is determined only by the SV

O Lett; (j=1, ..., s) be the indices of the s support vectors. We can
write
w=5Y%

Jrd~d : '
j=1aTX we = rd — wlxJ

m For testing with a new data z
0 Computwy 'z + 1y, = Yo alr (%) z) + wo

O and classify z as class 1 if the sum is positive, and class 2

otherwise 38
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A Geometric Interpretation

N “wlx G+ wo=1
[ | . .
=0 0o = T,
Class 1 3 ", WXt wo=0
wlx + wo = —

39
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Soft Margin Hyperplane

=

m Not linearly separable:
use slack variables

rt(WTxt +W0)2 1-¢
m Soft error

2.8

t

m New primal is

Lp =%”W||2 ‘Fcztét _Ztat[rt(\NTxt —l_WO)_l—i_Fﬁt]_ZtMtE)t
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The Optimization Problem

m The dual of the problem is

1 n
max. L(a) =) al — 5 > atalrirs(x)Tx®
2

t,s

Fubject toC>a">0,) o' =0
:

m w is also recovered as‘w = 23.:1 ajrjxj

m The only difference witn tne 1in€ariy separanie case is that
there is an upper bound C on ot

m  Once again, a QP solver can be used to find o

41
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Kernel Machines

m Preprocess input x by basis functions
z = ¢(x) 9(z)=w'z

g(x)=wT o(X)
m The SVM solution

W = Zoctrtzt = tZ(Xtrttp(Xt)
o) =wele) = Sl T o)

g(x)=ZatrtK(xt,x

42
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Kernel Functions

= Polynomials of degree q: K(Xt ,X)= (XTXt +1)q
K(x,y)= (xTy +1)2
= (X,y, + Xy, +1f
=1+ 2X,Y,; +2X,Y, + 22X, XY, Y, + X2y 2 + X3y 3

(I)(X)z|::|.,\/§X1,\/Exzv\/Exlxwxf'xg]r 2
< -

! = PR L
m Radial-basis functions: K(x',x)= exp o2

m Sigmoidal functions:

| I— |

K(x',x)=tanh(2x"x" +1)
(Cherkassky and Mulier, 1998)
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Handwritina Recoanition

p omput Zv kxx)+b

weights

¢ G

dot product (®(x)-P(x, )= k(x,x))

)
i@(x,} D(x PX) mapped vectors O(x), P(x)

1] 14

support vectors x, ... X,

ll test vector x

-
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Using Kernel Functions

m Change all inner products to kernel functions
m For training,

n 1 mn
Original max. W(a) = > «o; — > ST aagyyx) x;
i=1 i=1,j=1
n
subject to C > a; >0, ) aoyy; =0
i=1
. n l n
With .kernel max. W(a) = Z O,/Z‘—E Z Ozz'Ozjy@‘yjK(Xi,Xj)
function i=1 iil,jzl
subject to C > a; >0, ) aoyy; =0
i=1

45
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Using Kernel Functions

m For testing, the new data z is classified as Class 1 if
f >0, and as Class 2 if f <O

S
Original w= > Ot Yt Xt
j=1

f=wlztb= Zatytxtz—l—b
j=1
With kernel v= Z 0t qb(xt)

function F= (W ¢(Z)> 4 b= Z oy, K (xt;,2) + b

j=1 46
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Example

m Suppose we have 5 1D data points
0O X,=1, X,=2, X3=4, X,=5, X;=6, with 1, 2, 6 as class 1 and 4, 5 as
class 2 = y,=1,y,=1,y,=-1,y,=-1, y,=1
m  We use the polynomial kernel of degree 2
O K(xy) = (xy+1)?
O Cis set to 100
m We first find o; (i=1, ..., 5) by

5
subject to 100 > o; > 0, > ayy; =0
z—l
5

max. > o;— - Z Z a;oyyi (T + 1)2!7

=1 V_Z—lj 1
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Example

m By using a QP solver, we get
O o,=0, a,=2.5, 03=0, 0,=7.333, 0;=4.833
O Note that the constraints are indeed satisfied
O The support vectors are {X,=2, X,=5, X;=6}

fy) =2 5"(15("23%5" 17 173330 1) (55 4 1)? + 4.833(1) (6y + 1)% + b
= 0.6667.7} —5.333z+5b

[ b is recovered by solving f(2)=1 or by f(5)=-1 or by

\—1 QC\/ v v lia nn

yz(w ¢z)tb) =1
= f(y) = 0.6667z2 — 5.3332 4+ 9

48
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Example

Value of discriminant function

class 1 class 2 . class 1

~0
0]

=X
N

49
Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)




Multi-class Classification

SVM is basically a two-class classifier
One can change the QP formulation to allow multi-class
classification
m  More commonly, the data set is divided into two parts
“intelligently” in different ways and a separate SVM is trained
for each way of division
m  Multi-class classification is done by combining the output of
all the SVM classifiers
O Majority rule
O Error correcting code
O Directed acyclic graph

50
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Software

A list of SVM implementations can be found at
http://www.kernel-machines.org/software.html

m Some implementations (such as LIBSVM) can handle
multi-class classification

m SVMLight is among one of the earliest
implementations of SVM

m Several Matlab toolboxes for SVM are also available

51
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Steps for Classification

m Prepare the pattern matrix
m Select the kernel function to use
m Select the parameter of the kernel function and the

value of C
O You can use the values suggested by the SVM software, or
you can set apart a validation set to determine the values
of the parameter
m Execute the training algorithm and obtain the o,
values

m Unseen data can be classified using the o; values
and the support vectors

52
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SVM Strengths & Weaknesses

m Strengths
O Training is relatively easy
= No local optimal, unlike in neural networks
O It scales relatively well to high dimensional data

O Tradeoff between classifier complexity and error can be
controlled explicitly

O Non-traditional data like strings and trees can be used as input
to SVM, instead of feature vectors

m Weaknesses
O Need a “good” kernel function

53
Lecture Notes for E Alpaydin 2004 Introduction to Machine Learning © The MIT Press (V1.1)

A



& Support Vector Regression

m Linear regression in feature space
m Unlike in least square regression, the error function is ¢-
insensitive loss function
O Intuitively, mistake less than ¢ is ignored
O This leads to sparsity similar to SVM

e-insensitive loss function Square loss function
Penalty Penalty
Value off
Value off target
- 54
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& Support Vector Regression

m Given: a data set {X,, ..., X} with target values {u,, ..., u,}, we
want to do e-SVR

m The optimizationlproblem is n
Min EHwW +C Y &+&D)
i=1
ui —whx; —b < e+ ¢
subject to {wlx; +b—u; < e+ &

= Similar t £ >0, >0
programming problem

55
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& Support Vector Regression

m C is a parameter to control the amount of influence of the
error

m The ||w||? term serves as controlling the complexity of the
regression function

O This is similar to ridge regression

m After training (solving the QP), we get values of o; and o;",
which are both zero if x; does not contribute to the error
function

m For a new instance z,

f(Z) = Z (O‘tj - Odzkj)K(th,Z) +b

j=1 56

Lecture Notes for E Alpaydin 2004 Introduct.c.. «v viawer e o

Vi)

Other Kernel Methods

m A lesson learned in SVM: a linear algorithm in the feature
space is equivalent to a non-linear algorithm in the input
space

m Classic linear algorithms can be generalized to its non-linear
version by going to the feature space

O Kernel principal component analysis, kernel independent

component analysis, kernel canonical correlation analysis, kernel
k-means, 1-class SVM are some examples

57
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Conclusion

m SVM is a useful method for classification

m Two key concepts of SVM: maximize the margin
and the kernel trick

m Much active research is taking place on areas
related to SVM

m Many SVM implementations are available on the
web for you to try on your data set!

58
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Resources

http:.//www.kernel-machines.org/
http://www.support-vector.net/
http://www.support-vector.net/icml-tutorial.pdf
http.//www.kernel-machines.org/papers/tutorial-

nips.ps.gz
http://www.clopinet.com/isabelle/Projects/SVM/ap

plist.html
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SVM for Regression

m Use a linear model (possibly kernelized)
F(X)=wTx+w,
m Use the ¢-sensitive error function

"o 1) <o
ec(rt,f(xt))— |rt_f(xt1_8 otherwise

" minZw[+oX(E )

t T t
r —(W x+w0)38+§+

(WTX +Wo)—rt <g+&
£.,8 20
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