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Recall - Discriminant Functions
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Likelihood- vs. Discriminant-
based Classification

Likelihood-based: Assume a model for p(x|Ci), use Bayes’ rule 
to calculate P(Ci|x) 

gi(x) = log P(Ci|x)
Discriminant-based: Assume a model for gi(x|Φi); no 
assumption about the densities; no density estimation
Discriminant-based is non-parametric (w.r.t. the class 
densities)
Estimating the boundaries is enough; no need to accurately 
estimate the densities inside the boundaries
Learning: optimization of the parameters Φi to maximize the 
classification accuracy given labeled training data (or 
minimize error function)
Inductive bias ?
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Linear Discriminant

Linear discriminant:

Advantages:
Simple: O(d) space/computation 
Knowledge extraction: Weighted sum of attributes; 
positive/negative weights, magnitudes (credit scoring)
Optimal when p(x|Ci) are Gaussian with shared cov matrix; 
useful when classes are (almost) linearly separable
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Generalized Linear Model

Quadratic discriminant:

Higher-order (product) terms:

Map from x to z using nonlinear basis functions 
and use a linear discriminant in z-space
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Extension to Non-linear
Key idea: transform xi to a higher dimensional space to “make 
life easier”

Input space: the space containing xi
Feature space: the space of φ(xi) after transformation

Why transform?
Linear operation in the feature space is equivalent to non-linear 
operation in input space
The classification task can be “easier” with a proper 
transformation. Example: XOR

Kernel trick for efficient computation
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Kernel Trick

The relationship between the kernel function K and the 
mapping φ(.) is

This is known as the kernel trick
In practice, we specify K, thereby specifying φ(.) indirectly, 
instead of choosing φ(.)
Intuitively, K(x,y) represents our desired notion of 
similarity between data x and y and this is from our prior 
knowledge
K(x,y) needs to satisfy a technical condition (Mercer 
condition) in order for φ(.) to exist
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Kernel Trick

Define the kernel function K (x,y) as 

Consider the following transformation

The inner product can be computed by K without going 
through the map φ(.)
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Example Kernel Functions
Polynomial kernel with degree d

Radial basis function kernel with width σ

Closely related to radial basis function neural networks
Sigmoid with parameter κ and θ

It does not satisfy the Mercer condition on all κ and θ
Research on different kernel functions in 
different applications is very active 
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Two Classes
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Geometry
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Multiple Classes
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Pairwise Separation
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Linear Separable Case

Class 1

Class 2
Many decision 
boundaries can separate 
these two classes
Which one should we 
choose?
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Bad Decision Boundaries

Class 1

Class 2

Class 1

Class 2
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Margin Should Be Large

The decision boundary should be as far away from the data 
as possible

We should maximize the margin, m

Class 1

Class 2

m
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Optimal Separating Hyperplane

(Cortes and Vapnik, 1995; Vapnik, 1995)
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Margin

Distance from the discriminant to the closest 
instances on either side
Distance of x to the hyperplane is

We require

For a unique sol’n, fix ρ||w||=1and to max margin
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( ) t,wr tTt ∀+≥+ 1 to subject 
2
1 min 0

2 xww

Standard quadratic 
optimization 
problem, whose 
complexity 
depends on d
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Another formulation: complexity depends on N

Unconstrained 
optimization 
using Lagrange 
multipliers αt .
We need to 
Minimize w.r.t. 
w,wo and
Maximize w.r.t.
αt ≥ 0 

This is a quadratic optimization problem. Equivalently, we can solve the 
dual problem:  Maximize Lp w.r.t. αt subject to the constraints:
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• This is an optimization problem in αt only
• This can be solved using quadratic optimization.
• This depends on the sample size N and not on the the 

input dimension d Very important feature!! Why ?
• Most αt are 0 and only a small number have αt >0; they are 

the support vectors
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Characteristics of the Solution
Many of the αt are zero

w is a linear combination of a small number of examples
Sparse representation

xt with non-zero αt are called support vectors (SV)
The decision boundary is determined only by the SV
Let tj (j=1, ..., s) be the indices of the s support vectors. We can 
write

For testing with a new data z
Compute

and classify z as class 1 if the sum is positive, and class 2 
otherwise
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α6=1.4

A Geometric Interpretation

Class 1

Class 2

α1=0.8

α2=0

α3=0

α4=0

α5=0
α7=0

α8=0.6

α9=0

α10=0
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Soft Margin Hyperplane

Not linearly separable: 
use slack variables

Soft error

New primal is
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The Optimization Problem

The dual of the problem is

w is also recovered as
The only difference with the linearly separable case is that 
there is an upper bound C on αt

Once again, a QP solver can be used to find αi 
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Kernel Machines

Preprocess input x by basis functions
z = φ(x) g(z)=wTz  

g(x)=wT φ(x)
The SVM solution 
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Kernel Functions

Polynomials of degree q:

Radial-basis functions:
Sigmoidal functions:
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Handwriting Recognition
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Using Kernel Functions

Change all inner products to kernel functions
For training,

Original

With kernel 
function
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Using Kernel Functions

For testing, the new data z is classified as Class 1 if 
f ≥0, and as Class 2 if f <0

Original

With kernel 
function
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Example

Suppose we have 5 1D data points
x1=1, x2=2, x3=4, x4=5, x5=6, with 1, 2, 6 as class 1 and 4, 5 as 
class 2 ⇒ y1=1, y2=1, y3=-1, y4=-1, y5=1

We use the polynomial kernel of degree 2
K(x,y) = (xy+1)2
C is set to 100

We first find αi (i=1, …, 5) by
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Example

By using a QP solver, we get
α1=0, α2=2.5, α3=0, α4=7.333, α5=4.833

Note that the constraints are indeed satisfied
The support vectors are {x2=2, x4=5, x5=6}

The discriminant function is

b is recovered by solving f(2)=1 or by f(5)=-1 or by 
f(6)=1, as x2, x4, x5 lie on 

and all give b=9
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Example
Value of discriminant function

1 2 4 5 6

class 2 class 1class 1
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Multi-class Classification

SVM is basically a two-class classifier
One can change the QP formulation to allow multi-class 
classification
More commonly, the data set is divided into two parts 
“intelligently” in different ways and a separate SVM is trained 
for each way of division
Multi-class classification is done by combining the output of 
all the SVM classifiers

Majority rule
Error correcting code
Directed acyclic graph
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Software

A list of SVM implementations can be found at 
http://www.kernel-machines.org/software.html
Some implementations (such as LIBSVM) can handle 
multi-class classification
SVMLight is among one of the earliest 
implementations of SVM
Several Matlab toolboxes for SVM are also available
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Steps for Classification

Prepare the pattern matrix
Select the kernel function to use
Select the parameter of the kernel function and the 
value of C

You can use the values suggested by the SVM software, or 
you can set apart a validation set to determine the values 
of the parameter

Execute the training algorithm and obtain the αi 
values 
Unseen data can be classified using the αi values 
and the support vectors
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SVM Strengths & Weaknesses

Strengths
Training is relatively easy 

No local optimal, unlike in neural networks
It scales relatively well to high dimensional data
Tradeoff between classifier complexity and error can be 
controlled explicitly
Non-traditional data like strings and trees can be used as input 
to SVM, instead of feature vectors

Weaknesses
Need a “good” kernel function
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ε Support Vector Regression

Linear regression in feature space
Unlike in least square regression, the error function is ε-
insensitive loss function

Intuitively, mistake less than ε is ignored
This leads to sparsity similar to SVM

ε−ε
Value off
target

Penalty

Value off
target

Penalty

Square loss functionε-insensitive loss function
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ε Support Vector Regression

Given: a data set {x1, ..., xn} with target values {u1, ..., un}, we 
want to do ε-SVR
The optimization problem is

Similar to SVM, this can be solved as a quadratic 
programming problem
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ε Support Vector Regression

C is a parameter to control the amount of influence of the 
error
The ||w||2 term serves as controlling the complexity of the 
regression function

This is similar to ridge regression
After training (solving the QP), we get values of αi and αi

*, 
which are both zero if xi does not contribute to the error 
function
For a new instance z,
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Other Kernel Methods

A lesson learned in SVM: a linear algorithm in the feature 
space is equivalent to a non-linear algorithm in the input 
space
Classic linear algorithms can be generalized to its non-linear 
version by going to the feature space

Kernel principal component analysis, kernel independent 
component analysis, kernel canonical correlation analysis, kernel 
k-means, 1-class SVM are some examples
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Conclusion

SVM is a useful method for classification
Two key concepts of SVM: maximize the margin 
and the kernel trick
Much active research is taking place on areas 
related to SVM
Many SVM implementations are available on the 
web for you to try on your data set!
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Resources

http://www.kernel-machines.org/
http://www.support-vector.net/
http://www.support-vector.net/icml-tutorial.pdf
http://www.kernel-machines.org/papers/tutorial-
nips.ps.gz
http://www.clopinet.com/isabelle/Projects/SVM/ap
plist.html
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SVM for Regression

Use a linear model (possibly kernelized)
f(x)=wTx+w0

Use the є-sensitive error function
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